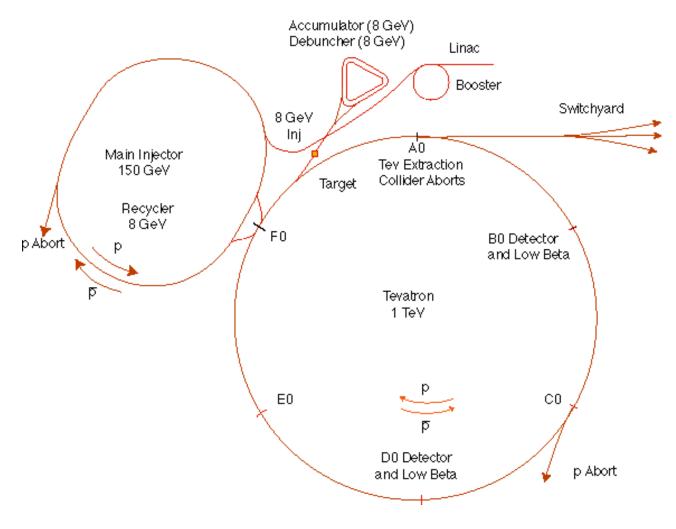
Tevatron Run II Performance and Plans

Vladimir SHILTSEV FNAL ANL, June 7, 2002


华

Outline

- 1) Brief description of operations
- 2) Run II luminosity: past, present, plan
- 3) Issues: battle for antiprotons
- 4) Proton issues
- 5) Next steps

FNAL Accelerator Complex

FermilabTevatron Accelerator With Main Injector

Luminosity Recipe

$$L = \frac{10^{-6} fBN_{p}N_{\overline{p}}(6 \beta_{r}\gamma_{r})}{2\pi\beta^{*}(\varepsilon_{p} + \varepsilon_{\overline{p}})} H(\sigma_{I}/\beta^{*}) \qquad (10^{31} cm^{-2} sec^{-1})$$

f = revolution frequency = 47.7 KHz

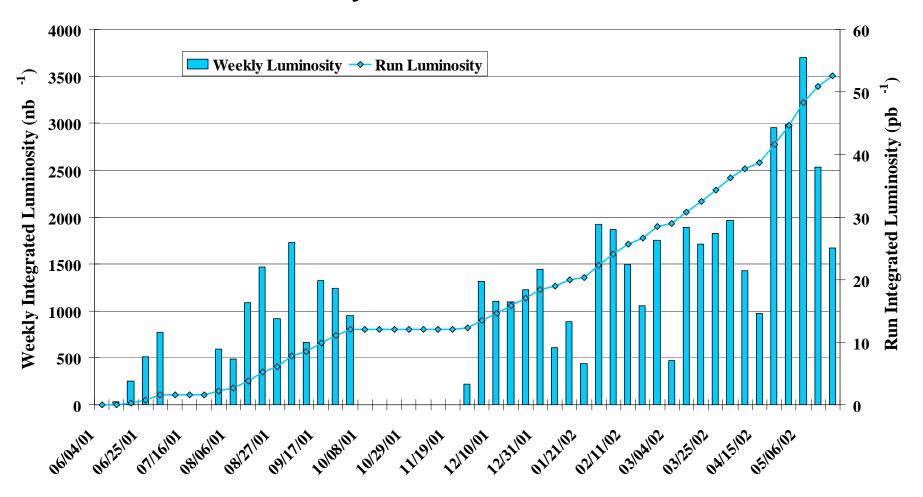
B = # bunches = 36

 $\beta_r \gamma_r$ = relativistic beta x gamma = 1045

 β^* = beta function at IR = 35 cm

H = hourglass factor = .60 - .75

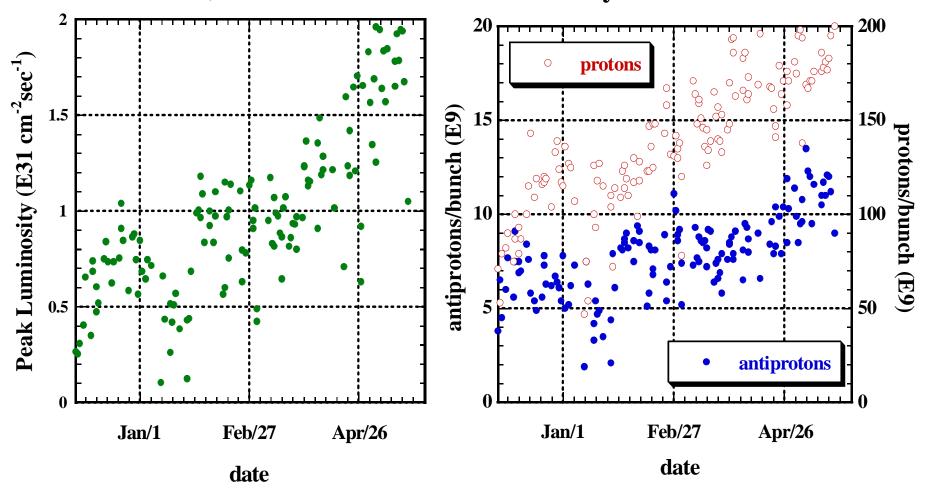
 $N_p / N_{pbar} =$ bunch intensities (E9)


 ε_{p} , ε_{pbar} = transverse emittances (π -mm-mrad)

 σ_l = bunch length (cm)

Integrated Luminosity History

Luminosity Per Week: 6/04/01-5/26/02



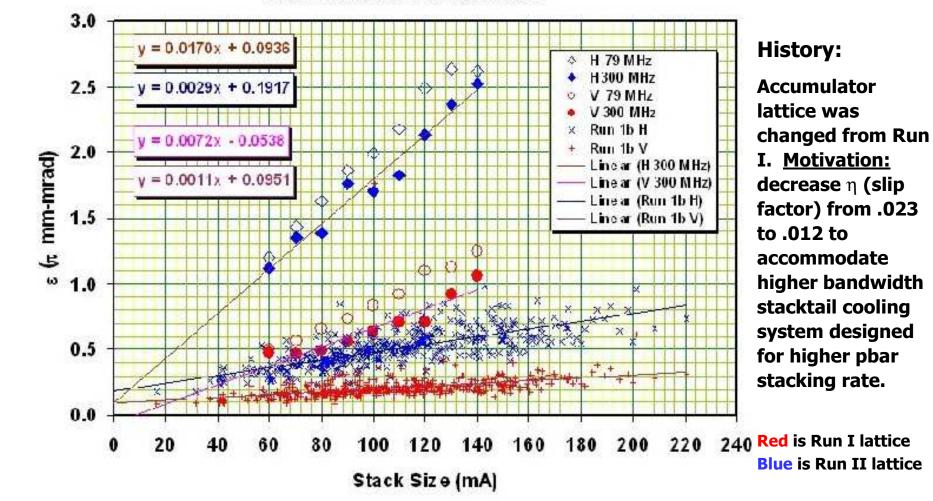
Peak Luminosity and Intensity

Status of Tevatron Collider, Vladimir Shiltsev, ANL Seminar

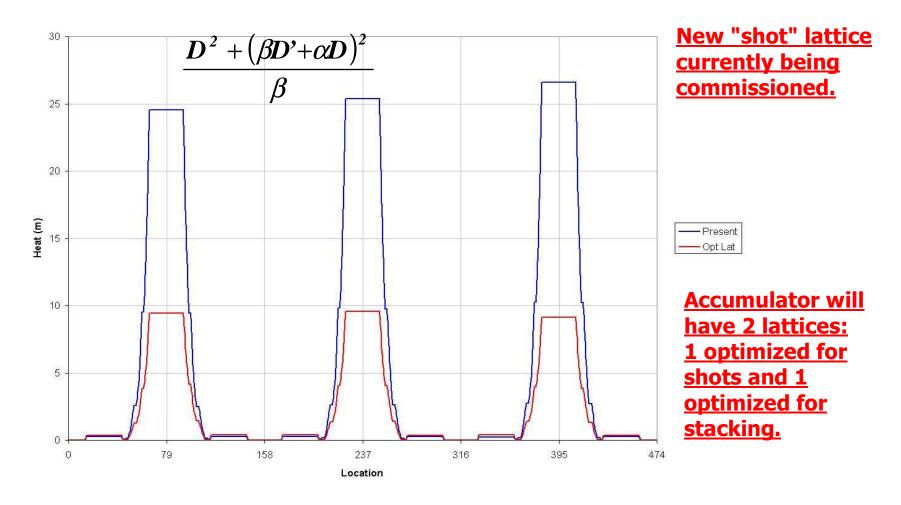
06/07/2002

Status on Luminosity Parameters


	highest luminosit y to 12/15/01	highest luminosity to date	Run IIa goals
max. antiproton stackrate (E10/hr)			18
max. antiproton stacksize (E10/hr)	115	120	165
pbar xfer eff.	.23	.37	.80
pbars/bunch at low beta (E9)	7.6	10.8	33.0
protons/bunch at low beta (E9)	115	194	270
emit. at low beta (π-mm-mrad)	16.0	16.3	17.5
peak luminosity (E31 cm ⁻² sec ⁻¹)	0.84	1.96	8.6


The Major Problems (Run IIa)

- Transverse emittance in the Accumulator
 - lattice, cooling
- Long range beam-beam in the Tevatron
 - helix, aperture
- CDF and D0 backgrounds
 - vacuum (?), more shielding
- Everything else
 - mismatch, coalescing, beam stability, lifetime....
- -- Luminosity not currently limited by pbar production rate


Accumulator Transverse Emittance

Accumulator Transverse Heating (IBS)

Accumulator Core Cooling Upgrade

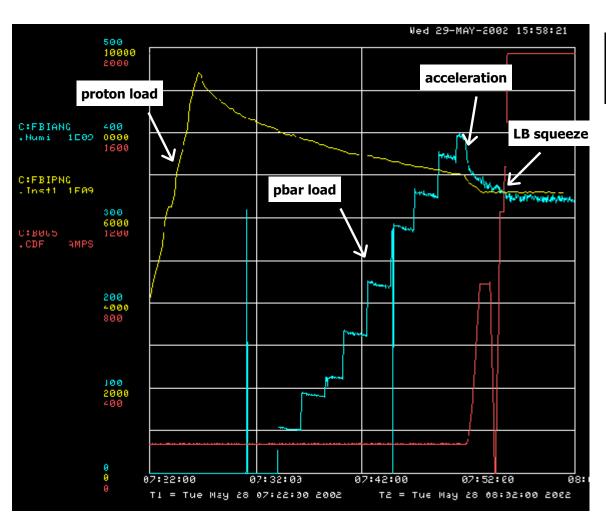
old arrays:

planar loops

2-4, 4-6 GHz

new arrays:

slotline array


4.4-7.6 GHz

(much better S/N)

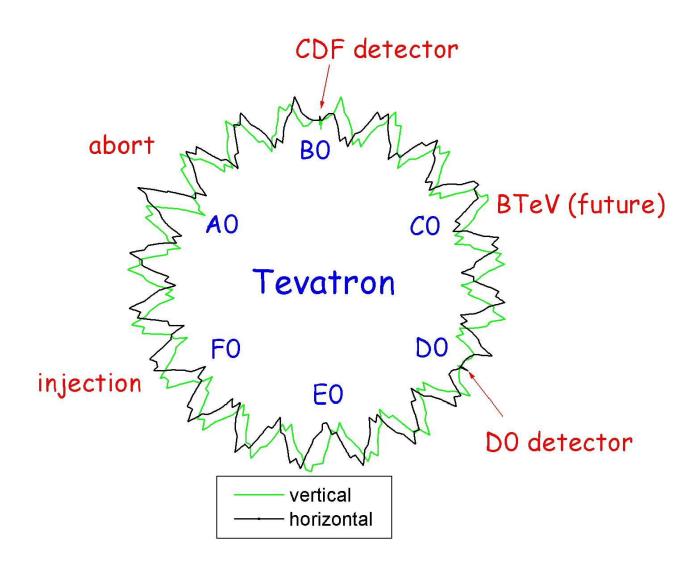
Scheduled for installation
June 3-17

Tevatron Efficiency

Yellow is proton intensity
Cyan is antiproton intensity
Red is LB quad current

Overall pbar efficiency in the Tevatron is ~55% (xfer, 150 Gev lifetime, acceleration, LB squeeze)

Long range beam-beam: Issues and Plans

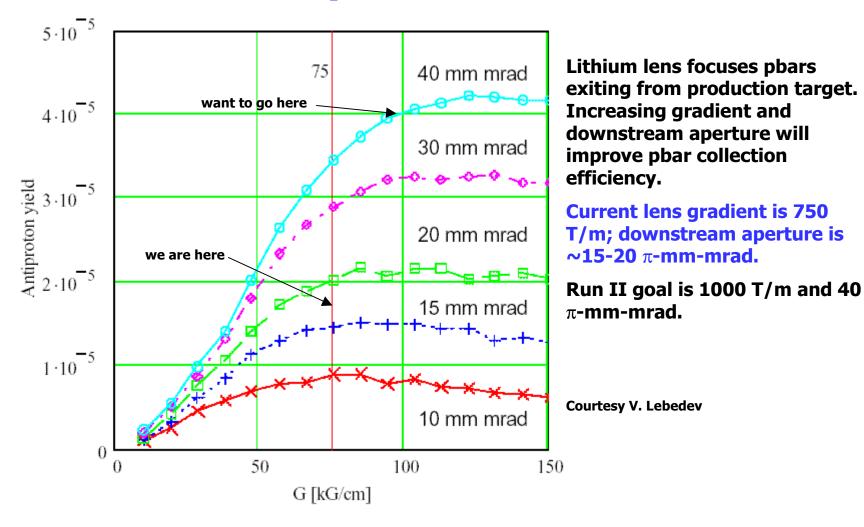

- ◆ Head on beam-beam tuneshift @ 980 GeV is currently ~.01 with no serious problems (antiproton lifetime is good)
- Long range beam-beam tuneshift is ~.005 at 150 GeV; antiprotons are seriously degraded by high intensity protons
- Minimum beam separation on the injection helix is ~4 beam sigmas (72 crossings), ~3 sigma during transition from injection to collision helix and ~5 sigma at ciollision helix
- Significant improvements have been made by modifying the original helix (LB squeeze efficiency went from 75% to 97% while increasing proton intensity by 80%); helix size currently limited by physical aperture

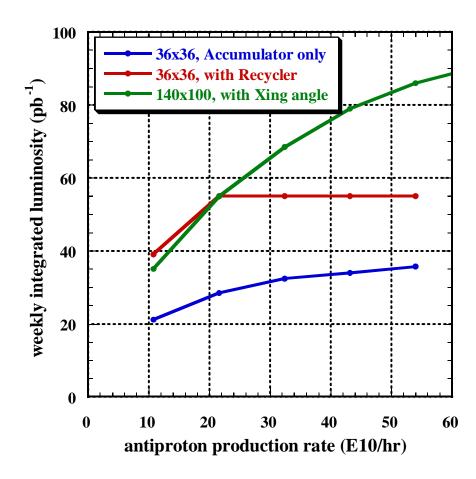
• Plans:

- remove aperture limitation in Fall 2002 shutdown, opening up helix ~30%
- modify operations to decrease time spent at 150 GeV (24 min \rightarrow 9 min)
- modify A0 long straight section to improve helix (Fall 2002?)
- commission octupoles to provide Landau damping for protons (some success with this already)
- commission octupole circuits as sextupole feeddowns to provide differential proton and antiproton chromaticity (under investigation)

Beam-Bean Separation in Tevatron

Planned Antiproton Production Upgrades


- The Run IIa goal for antiproton production is 18E10/hr. In order to support peak luminosities >1.5E32 cm⁻²sec⁻¹ a higher antiproton production rate is required.
- The following upgrades are actively being worked on
 - -- "slip stacking" in the Main Injector
 - -- lithium lens gradient increase
 - -- 8 GeV antiproton collection aperture increase
- These upgrades will necessitate the installation of a higher bandwidth (4-8 GHz) stacktail cooling system in the Accumulator, rapid transfers of antiprotons to the Recycler (every ~20 minutes), and the use of electron cooling in the Recycler


Proton beam instability on the ramp

Lithium Lens and Beamline Aperture Increase

Future Scenarios

Fine print:

- Acc. stack size limited to 250mA; stack rate is stack size dependent
- RR stack rate is not stack size dependent
- 8% loss in Acc. → RR transfers
- Intensity dependent RR → Tevatron transfer eff.
- Run II design emittances used
- Proton intensity = 270E9/bunch
- IBS only for growth rates
- Luminosity counted with ±35 cm from IR's
- 70 mb cross section for luminosity
- 3 ev-sec, 20 π -mm-mrad pbars are recycled
- IR Xing angle is $\pm 136 \mu rad$
- Luminosity levelled to <5 interations/Xing (48 mb inelastic cross section)
- 20% weekly downtime; 1 hour shot-setup time

캮

Plans/Schedule

- Now
 - -- commission new Accumulator lattice
 - -- ongoing tuning of all machines
- June 2002 shutdown
 - -- install new Accumulator core stochastic cooling tanks
 - -- improve Tevatron vacuum
- Fall 2002 shutdown
 - -- improve Tevatron physical aperture
 - -- improve Tevatron vacuum
 - -- improve Recycler vacuum
 - -- add more magnetic shielding to Recycler
 - 2003 integrate Recycler into Collider operations
- 2004 install/commission electron cooling in the Recycler
- ???? -- 132 nsec bunch spacing

Summary

- Progress on Run IIa is being made but is slower than hoped for. We are factor of 2 behind schedule, and factor of 4 below design Run II luminosity
- Major (unexpected) problems are: long range beambeam interaction (pbars), instabilities and detector backround (protons) in Tevatron; instabilities and longitudinal and transverse emittance blow-up, multibunch coalescing in Main Injector; pbar emittances in Antiproton Accumulator.
- Run II is proving to be difficult, but we understand (most of) the problems, know how to fix them and are doing that.
- Progress is being made on commissioning the Recycler, which is required to attain luminosities above ~1E32cm⁻²sec⁻¹